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Unit 7 – Introduction to Digital System Design 
 

DIGITAL SYSTEM MODEL 
 
▪ FSM + Datapath Circuit: 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

USE OF GENERIC COMPONENTS 
▪ Among the most common components used in the development of digital systems we have registers, shift registers, and 

counters. To optimize design time, it is recommended to use parameterized components (VHDL for FPGA Tutorial – Unit 5): 

✓ n-bit register with enable and synchronous clear: my_rege 

✓ Counter modulo-N with enable and synchronous clear: my_genpulse_sclr 

✓ n-bit parallel access (right/left) register with enable and synchronous clear: my_pashiftreg_sclr 

 

EXAMPLES 
 

EXAMPLE: CAR LOT COUNTER 
 

If A = 1 → No light received (car obstructing LED A) 

If B = 1 → No light received (car obstructing LED B) 

 
If car enters the lot, the following sequence (A|B) must be followed: 
 00 → 10 → 11 → 01 → 00 
If car leaves the lot, the following sequence (A|B) must be followed: 
 00 → 01 → 11 → 10 → 00 

 
A car might stay in a state for many cycles since the car speed is very large 
compared to that of the clock frequency. 
 

 
DIGITAL SYSTEM (FSM + Datapath circuit) 
▪ Usually, when ‘resetn’ (asynchronous clear) and ‘clock’ are not drawn, they are implied. 
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https://www.secs.oakland.edu/~llamocca/Tutorials/VHDLFPGA/Vivado/Unit_5/my_rege.vhd
https://www.secs.oakland.edu/~llamocca/Tutorials/VHDLFPGA/Vivado/Unit_5/my_genpulse_sclr.vhd
https://www.secs.oakland.edu/~llamocca/Tutorials/VHDLFPGA/Vivado/Unit_5/my_pashiftreg_sclr.vhd
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▪ Finite State Machine (FSM): 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

▪ Algorithmic State Machine (ASM) chart:  
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EXAMPLE: ACCUMULATOR 
 
DIGITAL SYSTEM (FSM + Datapath circuit) 
▪ Register: sclr: Synchronous clear. If E = ‘1’ and sclr = ‘1’, then the output bits of the registers are set to zero. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
▪ Finite State Machine (FSM): 
 
 
 
 
 
 

 
 
 
 
▪ Algorithmic State Machine (ASM) Chart: 
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EXAMPLE: 7-SEGMENT SERIALIZER (VHDL CODE) 
 

DIGITAL SYSTEM (FSM + Datapath circuit) 
▪ Most FPGA Development board have a number of 7-segment displays (e.g., 4, 8). However, only one can be used at a time.  
▪ If we want to display four digits (inputs A, B, C, D), we can design a serializer that will only show one digit at a time on the 

7-segment displays. 
▪ Since only one 7-segment display can be used at a time, we need to serialize the four HEX (or BCD) outputs. In order for 

each digit to appear bright and continuously illuminated, each digit is illuminated for 1 ms every 4 ms (i.e. a digit is un-
illuminated for 3 ms and illuminated for 1 ms). This is taken care of by feeding the output 𝑧 of the ‘counter to 0.001s’ to the 

enable input of the FSM. This way, state transitions only occur each 0.001 s. 
▪ Note: the input signals as well as the enable signals to the four 7-segment displays are active low (this is the proper 

configuration for the Nexys A7-50T/A7-100T, Nexys 4-DDR). 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
▪ Generic Component: Behavior on the clock tick. 
 

0.001 s counter (modulo-105): Free running counter 
if Q = 105 - 1 then 

      Q  0 

   else 

      Q  Q+1 

  end if; 

end if; 

 

* z = 1 if Q = 105-1 

 
▪ Algorithmic State Machine (ASM) chart: This is a Moore-type FSM. 
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http://www.secs.oakland.edu/~llamocca/Tutorials/VHDLFPGA/Vivado/Unit_7/serializer.zip
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EXAMPLE: BIT-COUNTING CIRCUIT (Parametric VHDL Code) (Video: VHDL coding in Vivado, n=8) 

▪ It counts the number of bits in a register A that have the value ‘1’.  

▪ Example: A=10110011 → count = 0101. 
 
DIGITAL SYSTEM (FSM + Datapath circuit) 

▪ FSM: as a ASM Chart. Modulo-n+1 bit counter (m bits): it has synchronous clear (𝑠𝑐𝑙𝑟). 

▪ Generic components: Behavior on the clock tick: 

Counter modulo-n+1 (0 to n): 

If E=0, the count stays. 

n-bit Parallel access shift register: 

If E=0, the output is kept 
if E = 1 then 

   if sclr = 1 then 

      Q  0 

   elseif Q = n then 

      Q  0 

   else 

      Q  Q+1 

  end if; 

end if; 

if E = 1 then 

   if s_l = ‘1’ then 

      Q  D 

   else 

      Q  shift in ‘din’ (to the right) 
  end if; 

end if; 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

▪ Example (timing diagram): 𝑛 = 8,𝑚 = 4. Video: Timing diagram completion (different DA values) 
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http://www.secs.oakland.edu/~llamocca/Tutorials/VHDLFPGA/Vivado/Unit_7/bit_counting.zip
https://youtu.be/SrC_klgpcb8
https://youtu.be/hRgv3ZkLJD4
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EXAMPLE: SEQUENTIAL MULTIPLIER (Parametric VHDL Code) (Video: VHDL coding in Vivado, n=4) 

 

UNSIGNED MULTIPLICATION: SEQUENTIAL ALGORITHM 
 

 

 

P  0, Load A,B 

while B  0 
   if b0 = 1 then 

      P  P + A 

   end if 

   left shift A 

   right shift B 

end while 

Example: 
 
 
 
 
 
 
 
P  0, A  1111, B  1101 

b0=1  P  P + A = 1111.        A  11110, B  110 

b0=0  P  P = 1111.            A  111100, B  11 

b0=1  P  P + A = 1111 + 111100 = 1001011.       A  1111000, B  1 

b0=1  P  P + A = 1001011 + 1111000 = 11000011.  A  11110000, B  0 

 

DIGITAL SYSTEM (FSM + Datapath circuit) 
▪ Iterative Multiplier Architecture. Register P: 𝑠𝑐𝑙𝑟: synchronous clear. The result is computed in at most 𝑛    cycles. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

▪ Generic Components: Behavior on the clock tick: 
 

2n-bit register: 

If E=0, the output is kept 

Parallel access shift register: If E=0, the output is kept 

A (2n bits, left shift), B (n bits, right shift) 
if E = 1 then 

   if sclr = 1 then 

      Q  0 

   else 

      Q  D 

  end if; 

end if; 

if E = 1 then 

   if s_l = ‘1’ then 

      Q  D 

   else 

      Q  shift in ‘din’ 

          (to the left(A) or right(B)) 
  end if; 

end if; 

 

▪ Algorithmic State Machine  (ASM) chart  
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http://www.secs.oakland.edu/~llamocca/Tutorials/VHDLFPGA/Vivado/Unit_7/serial_mult.zip
https://youtu.be/Hr3M9ePgCSg
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▪ Timing Diagram example: 𝑛 = 4 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

EXAMPLE: RGB LED CONTROL 
▪ We change the color of the RGB LED every 0.5 seconds. Two modes are allowed (based on an input ‘x’). 

✓ First Mode: BLACK → RED → GREEN → BLUE 
✓ Second Mode: BLACK → YELLOW → CYAN → VIOLET 
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EXAMPLE: CAN BIT STUFFING (RECEIVER) 
▪ Whenever a CAN transmitter detects 5 consecutive identical bits, it inserts a complemented bit. This is applied only to the 

start-of-frame field, arbitration, control, data, and CRC field. The figure shows a frame in the CAN version 2.0b. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
▪ In a CAN receiver, we have to verify whether the stuffed bits are correct: 
 
 
 
 
DIGITAL SYSTEM (FSM + Datapath Circuit) 
▪  Input signal 𝑥: qualified by 

𝐸. The system generates 

𝑥_𝑑 (de-stuffed 𝑥) qualified 

by v. If 6 consecutive bits 

are identical, we assert 

stuff_err (stuffing error). 

▪ We compare two 
consecutive samples (𝑥[𝑛] 
and 𝑥[𝑛 −  ]). Here, 𝑥 =
𝑥[𝑛] and 𝑥_𝑑 = 𝑥[𝑛 −  ]. 
To determine whether 5 
consecutive bits are identical, we compare 𝑥[𝑛] and 𝑥[𝑛 −  ] four times. 

▪ Finite State Machine: 
✓ S1: captures the first bit, though there is no other bit to compare it to. 
✓ S2: captures the other incoming bits, and it compares two consecutive bits at a 

time. If they match, then CC+1, otherwise C0. This can happen indefinitely 

until C=3 and these two bits match (i.e., after 4 comparisons, we determined that 

5 consecutive bits are identical). Then, we move to S3. 
✓ S3: It determines whether the stuffed bit is correct. If the 5th and 6th bits match, 

there is an error. On the next cycle, 𝑥_𝑑 is invalid and we do not assert the valid 

flag v, as we are de-stuffing this extra bit. We then return to S1 and start over. 

▪ In the figure, we start right after resetn was asserted. Cases: 111111, 000001. E=1. 
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EXAMPLE: SERIAL DATA TRANSMISSION WITH UART (VHDL CODE) 
 

UART Interface 
▪ This interface transfers data asynchronously (clock is not 

transmitted; transmitter and receiver use their own clocks).  
▪ Data communication: RXD (receive pin), TXD (transmit pin). The 

FT2232 chip inside the Nexys-4 board is in charge of handling 
the USB communication with a computer. 

▪ Format of a Frame: Start bit (‘0’), 8 to 9 data bits (LSB 
transmitted first), optional parity bit, and a stop bit (‘1’). 

▪ Transmitter: Simple design that transmit the data frame at the Baud rate (or bit rate in bps). 
▪ Receiver: It uses a clock signal whose frequency is a multiple (usually 16) of the incoming data rate. 
 
 
 
 
 
 

 
DIGITAL SYSTEM (FSM + Datapath circuit) 
▪ This circuit sends data from the Artix-7 FPGA (that is read via 

switches) to the FT2232 chip. 
▪ For a baud rate of 9600 bps, the Baud rate clock is 9600 Hz. The bit 

time is 104.2 us. 

Then: 𝑁 =
1
9600⁄

10 𝑛𝑠
=  04 6. We need a counter modulo-𝑁 in order 

to generate the proper time interval (bit time of 104.2 us). 
 

▪ Generic component (counter): Behavior on the clock tick: 

If E=0, the count stays. 
if E = 1 then 

   if sclr = 1 then 

      Q  0 

   else 

      Q  Q+1 

  end if; 

end if; 

* z=1 if Q = N-1 (max. count) 

 

✓ Note that the way this counter (my_genpulse_sclr) is designed, 

once the maximum count is reachd, asserting enable to ‘1’ will 
set the count to 0. 
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http://www.secs.oakland.edu/~llamocca/Tutorials/VHDLFPGA/Vivado/Unit_7/uart_tx.zip
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EXAMPLE: PS/2 INTERFACE FOR KEYBOARD (VHDL CODE) 
 

PS/2 Interface 
▪ This interface transfers data synchronously (clock is transmitted 

alongside data). 
▪ The PIC24FJ128 chip (auxiliary function microcontroller) inside the 

Nexys-4 DDR board emulates an old-style PS/2 bus and presents a 
PS/2 protocol to the FPGA. The PS/2 bus signals are converted to the 
USB protocol. Thus, we can interface with a USB keyboard or mouse 
as if they were using the PS/2 protocol. 

▪ PS/2 bus uses a bidirectional two-wire serial bus (PS2_CLK and 

PS2_DATA) to communicate with a host. The FPGA plays the role of the host. 

 
▪ Format of a Frame: Start bit (‘0’), 8 data bits (LSB transmitted first), parity bit (odd), and a stop bit (‘1’). 
▪ Timing Diagram: Data (1 byte) is captured on the falling edge. The following are times found in the Nexys-4 DDR datasheet: 

T  [60 us,100 us], tSU, tHD  [5 us,25 us] 
 
 
 
 
 
 
 
 
 
BYTE READ - DIGITAL SYSTEM (FSM + Datapath) 
▪ This system can only receive data from the 

PIC24FJ128. Thus, it only reads the PS2_CLK and 

PS2_DAT signals. 

▪ 10-bit output: |STOP|parity|D7-D0|. 

▪ Counter: EQ=1  Q  Q+1. Note that once the 

maximum count is reached, asserting enable to ‘1’ 
resets the count to 0. 

▪ Falling Edge Detector. This FSM detects transitions 
from 1 to 0 on ps2cf. 
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http://www.secs.oakland.edu/~llamocca/Tutorials/VHDLFPGA/Vivado/Unit_7/my_ps2keyboard.zip
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▪ Filter: It makes sure that ps2c (PS2_CLK) is constant for at least 8 clock cycles (FPGA operating frequency) before ps2cf 

is assigned a ‘1’ or a ‘0’. This mitigates the presency of glitches that may have been interpreted as falling edges. The choice 

of 8 cycles is based on actual testing (use more cycles if you notice glitches affecting the functioning of the circuit. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
INTERFACING WITH A PS/2 KEYBOARD 
▪ Data from the PS/2 keyboard is given as an 8-bit scan code (see Nexys4-DDR datasheet for a list of scan codes). The 

following is the protocol that is used when a key is pressed: 
✓ If a key is held, the scan code is sent repeatedly every 100 ms. 
✓ When the key is released, an F0 key-up code is sent, followed by the scan code of the released key. 

✓ If a key can be shifted to produce a new character (like a capital letter), then a shift character is sent alongside the scan 
code. Example: F0 12 [scan code]. 

✓ Some keys, called extended keys, send an E0 ahead of the scan code. When an extended key is released, an E0 F0 

key-up code is sent, followed by the scan code.  
▪ The circuit presented here cannot read extended keys or shifted keys, only normal keys. It waits for the key-up code (F0), 

and then it captures the scan code. For example, for ‘U’, the PS/2 keyboard sends |F0|3C|, this circuit retrieves 3C. 

▪ The block my_ps2read outputs 10 bits when it receives any code from the PS/2 keyboard. Example: 

✓ DOUT10 = 1111000000, where parity bit is   000000̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =   

✓ DOUT10 = 1100111100, where parity bit is 00    00̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =   

✓ DOUT10 = 1100011100, where parity bit is 000   00̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 0 

▪ The timing diagram shows when the ‘U’ key is pressed and released: F0 (key-up code) is sent first, then 3C (scan code). 
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EXAMPLE: ARTIFICIAL NEURON 
▪ Artificial neuron model. The membrane potential 𝒛 is a sum of products 

(input activations 𝑎𝑖 by weights 𝑤𝑖) to which a bias term 𝑏 is added. The 

action potential 𝒂𝒐 is modeled as a scalar function of 𝒛. The figure depicts a 

neuron with 5 inputs. The bias and the weights are constant values.  

𝑎𝑜 = 𝜎 (∑𝑎𝑖 × 𝑤𝑖
𝑖

 𝑏) 

 
✓ A popular and simple scalar function is the Rectified Linear Unit (ReLU): 

 𝜎(𝑧) = 𝑧 if 𝑧 ≥  0, otherwise 𝜎(𝑧) = 0. 
 
▪ DIGITAL SYSTEM (FSM + Datapath): An iterative architecture for a 5-input 

neuron is depicted. The circuit captures the input data (𝑎1, 𝑎 , 𝑎3, 𝑎4, 𝑎5) and then computes 𝒛 using a multiply-and-

accumulate approach (see iterative algorithm). The output 𝒂𝒐 is computed by applying the ReLU function to 𝒛. 
 

✓ All data is represented as signed integers: 
 Input activations (𝑎1, 𝑎 , 𝑎3, 𝑎4, 𝑎5), weights (𝑤1, 𝑤 , 𝑤3, 𝑤4, 𝑤5), bias (𝑏): 4-bits wide. 

 Weights and biases: They are constant values. 
 Membrane potential (𝒛) and action potential (𝒂𝒐): 12-bits wide (11 bits suffice, we select 12 for simplicity’s sake). 

 
✓ Example (this is what appears in the timing diagram, where 𝒛 and 𝒂𝒐 are in hexadecimal format): 

 𝑤1 = 04, 𝑤 = 0 , 𝑤3 = 0 , 𝑤4 = 08, 𝑤5 = 0 . 𝑏 = 06 
 If 𝑎1 = 04, 𝑎 = 0𝐸, 𝑎3 = 0𝐶, 𝑎4 = 05, 𝑎5 = 0𝐴.  

 Then 𝒛 =  44   −     −4    5(−8)   −6 = −40 = 0𝐹𝐷8. Finally, 𝒂𝒐 = 0000 
 

✓ Components: 

 Counter 0 to 4: If E=1, sclr=1, then Q  0. If E=1, sclr=0, then Q  Q+1. Also: z=1 if Q = 4, else z=0. 

 Register: If E=1, sclr=1→ Clear. If E=1, sclr=0 → Load data. 

 44 Signed Multiplier: Combinational circuit, whose result is 8-bits wide (sign-extended to 12 bits). 

 ReLU: Combinational Block that implements the ReLU operation. For example, if 𝒛 = 0𝐹𝐷8, then 𝒂𝒐 = 0000 
 

✓ FSM: The process begins when s is asserted, at this moment we capture 𝑎1, 𝑎 , 𝑎3, 𝑎4, 𝑎5 on the input registers. Then 𝒛 

is updated until the counter reaches its maximum value (4). The signal done is asserted when the final result is computed.  
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FSM: 
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EXAMPLE: SIMPLE PROCESSOR 
 
DIGITAL SYSTEM (FSM + Datapath circuit) 
▪ This system is a basic Central Processing Unit (CPU). For completeness, a memory would need to be included. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
▪ Instruction Set 

 

Every time w=1, we grab the instruction from IR and execute it.  

Instruction = |f2|f1|f0|Ry|Rx|. This is called ‘machine language instruction’ or Assembly instruction. 

✓ Opcode (operation code): IR(4..2). These bits specify the operation to be performed. 

✓ Operands: IR(1..0). These bits specify the register indices to be used in the operation: 

 Rx: index of the register where the result of an operation is stored (we also read data from Rx). Rx can be R0 or R1. 

 Ry: index of the register where we only read operands from. Ry can be R0 or R1. 

 
f (IR[4..2]) Operation Function 

000 load IN IN  Switches 

001 load Rx, IN Rx  IN 

010 copy Rx, Ry Rx  Ry 

011 add Rx, Ry Rx  Rx + Ry 

100 add Rx, IN Rx  Rx + IN 

101 xor Rx, Ry Rx  Rx XOR Ry 

110 inc Rx Rx  Rx + 1 

111 load OUT, Rx OUT  Rx 
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▪ Control Circuit: 
Here, the Control Circuit could be implemented as 

an FSM. However, in order to simplify the FSM 
design, the Control Circuit was built out of some 
combinational units, a register, and an FSM. The 
5-bit instruction is captured on the signal IRq. 
 
✓ Ex: Every time we want to enable register 𝑅𝑥, 

the FSM only asserts Ex (instead of controlling 

E_R0, E_R1 directly). The decoder takes care 

of generating the enable signal for the 
corresponding register 𝑅𝑥. 

 
 
 
 
 
 
 
 

✓ Control Circuit: FSM 
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▪ Arithmetic Logic Unit (ALU): 
 

op Operation Function Unit 
0000 

0001 

0010 

0011 

0100 

0101 

0110 

0111 

y <= A 

y <= A + 1 

y <= A - 1 

y <= B 

y <= B + 1 

y <= B – 1 

y <= A + B 

y <= A – B 

Transfer ‘A’ 

Increment ‘A’ 

Decrement ‘A’ 

Transfer ‘B’ 

Increment ‘B’ 

Decrement ‘B’ 

Add ‘A’ and ‘B’ 

Subtract ‘B’ from 'A' 

Arithmetic 

1000 

1001 

1010 

1011 

1100 

1101 

1110 

1111 

y <= not A 

y <= not B 

y <= A AND B 

y <= A OR B 

y <= A NAND B 

y <= A NOR B 

y <= A XOR B 

y <= A XNOR B 

Complement ‘A’ 

Complement ‘B’ 

AND 

OR 

NAND 

NOR 

XOR 

XNOR 

Logic 

 
▪ Assembly code example: 

 
load IN;  IN  0101 (SWs = 0101) 

load R1, IN; R1  0101 

copy R0, R1; R0  0101, R1  0101 

inc R1;  R1  0110 

xor R0, R1; R0  0101 xor 0110 = 0011 

add R0, R1; R0  0011 + 0110 = 1001 

load OUT, R0; OUT  1001 
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EXAMPLE: SIMPLE PROCESSOR WITH 3-STATE BUFFERS 
 
DIGITAL SYSTEM (FSM + Datapath circuit) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
▪ Instruction Set 

Every time w = '1', we grab the instruction from 𝑓𝑢𝑛 and execute it. 

𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 = |𝑓 |𝑓1|𝑓0|𝑅𝑦1|𝑅𝑦0|𝑅𝑥1|𝑅𝑥0|. This is called ‘machine language instruction’ or Assembly instruction: 

✓ 𝑓 𝑓1𝑓0: Opcode (operation code). This is the portion that specifies the operation to be performed.  
✓ 𝑅𝑥: Register where the result of the operation is stored (we also read data from 𝑅𝑥). 𝑅𝑥 can be R1, R2, R3, R4. 

✓ 𝑅𝑦: Register where we only read data from. 𝑅𝑦 can be R1, R2, R3, R4. 

 
f Operation Function 

000 Load Rx, Data Rx  Data 

001 Move Rx, Ry Rx  Ry 

010 Add Rx, Ry Rx  Rx + Ry 

011 Sub Rx, Ry Rx  Rx - Ry 

100 Not Rx Rx  NOT (Rx) 

101 And Rx, Ry Rx  Rx AND Ry 

110 Or Rx, Ry Rx  Rx OR Ry 

111 Xor Rx, Ry Rx  Rx XOR Ry 
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▪ Control Circuit:  
This is made out of some combinational units, a register, and a FSM: 
✓ Ex: Every time we want to enable register 𝑅𝑥, the FSM only asserts Ex (instead of controlling E_R0, E_R1, E_R2, E_R3 

directly). The decoder takes care of generating the enable signal for the corresponding register 𝑅𝑥. 
✓ Eo, so: Every time we want to read from register 𝑅𝑦 (or 𝑅𝑥), the FSM only asserts Eo (instead of controlling O_R0, 

O_R1, O_R2, O_R3 directly) and so (which signals whether to read from 𝑅𝑥 or 𝑅𝑦). The decoder takes care of generating 

the enable signal for the corresponding register 𝑅𝑥 or 𝑅𝑦. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
▪ Arithmetic-Logic Unit (ALU): 

 
op Operation Function Unit 
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▪ Algorithmic State Machine (ASM) Chart: 
Every branch of the FSM implements an Assembly instruction. 
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EXAMPLE: DISPLAYING PATTERNS ON 7-SEGMENT DISPLAYS 

▪ Different patterns are shown based on the selector ‘sel’ signal. Two 7-segment displays are used. 

▪ ‘stop’ input: If it is asserted (stop = 1), the lights’ pattern freezes. 
▪ The input ‘x’ selects the rate of change (every 1.5, 1.0, 0.5, or 0.25 seconds). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
DIGITAL SYSTEM (FSM + Datapath circuit) 
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▪ Algorithmic State Machine (ASM) chart: 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
▪ Algorithmic State Machine (ASM) chart: This is the FSM that controls the output MUX 
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