
ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-2700: Digital Logic Design Fall 2024

1 Instructor: Daniel Llamocca

Unit 7 – Introduction to Digital System Design

DIGITAL SYSTEM MODEL

▪ FSM + Datapath Circuit:

USE OF GENERIC COMPONENTS
▪ Among the most common components used in the development of digital systems we have registers, shift registers, and

counters. To optimize design time, it is recommended to use parameterized components (VHDL for FPGA Tutorial – Unit 5):

✓ n-bit register with enable and synchronous clear: my_rege

✓ Counter modulo-N with enable and synchronous clear: my_genpulse_sclr

✓ n-bit parallel access (right/left) register with enable and synchronous clear: my_pashiftreg_sclr

EXAMPLES

EXAMPLE: CAR LOT COUNTER

If A = 1 → No light received (car obstructing LED A)

If B = 1 → No light received (car obstructing LED B)

If car enters the lot, the following sequence (A|B) must be followed:
 00 → 10 → 11 → 01 → 00
If car leaves the lot, the following sequence (A|B) must be followed:
 00 → 01 → 11 → 10 → 00

A car might stay in a state for many cycles since the car speed is very large
compared to that of the clock frequency.

DIGITAL SYSTEM (FSM + Datapath circuit)
▪ Usually, when ‘resetn’ (asynchronous clear) and ‘clock’ are not drawn, they are implied.

B

A

photo
receptors

FINITE STATE
MACHINE

resetn

clock

Inputs

Outputs

CONTROL CIRCUIT

DATAPATH CIRCUIT

FINITE STATE
MACHINE

resetn

clock

A

B

CONTROL CIRCUIT

Q 10

10-bit counter

E

ud

E

ud

DATAPATH CIRCUIT

https://www.secs.oakland.edu/~llamocca/Tutorials/VHDLFPGA/Vivado/Unit_5/my_rege.vhd
https://www.secs.oakland.edu/~llamocca/Tutorials/VHDLFPGA/Vivado/Unit_5/my_genpulse_sclr.vhd
https://www.secs.oakland.edu/~llamocca/Tutorials/VHDLFPGA/Vivado/Unit_5/my_pashiftreg_sclr.vhd

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-2700: Digital Logic Design Fall 2024

2 Instructor: Daniel Llamocca

▪ Finite State Machine (FSM):

▪ Algorithmic State Machine (ASM) chart:

S1

S2

resetn=0

yes

no

00

AB=00

AB
11

S3

10

10
AB

00

S4

11
AB

10

01 11

00

S4

01
AB

00

01

E, ud  1

11
10

S6

01
AB

00

S7

11
AB

01

1011

00

S8

10
AB

00

10

E  1

11
01

01

S1 S2

00/00
resetn = 0

A|B/E|ud

01,10,11/00 S3 S4

10/00 11/00

S5

01/00

00/11

00/00

S6

01/00

11/00

10/00 11/00 01/00

01/00

00/00 10/00 11/00

10/00

00/00

S7 S8

11/00 10/00

01/00 11/00

10/0010/00

00/00

00/10

01/00 11/00

00/00 01/00

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-2700: Digital Logic Design Fall 2024

3 Instructor: Daniel Llamocca

EXAMPLE: ACCUMULATOR

DIGITAL SYSTEM (FSM + Datapath circuit)
▪ Register: sclr: Synchronous clear. If E = ‘1’ and sclr = ‘1’, then the output bits of the registers are set to zero.

▪ Finite State Machine (FSM):

▪ Algorithmic State Machine (ASM) Chart:

E|restart/Ei|sclr

S1 S2
10/10

resetn = 0

X1/11

10/10

X1/11

00/00
00/00

QD

resetn

+

QD

20

208

Dout

Din

FINITE STATE
MACHINE

E

E s
c
l
r

restart

E

Ei

sclr

sign

extension

8

DATAPATH CIRCUIT

S1

S2

resetn=0

1

0
E

0

restart
1

Ei, sclr  1

Ei, sclr  1

Ei  1

E

Ei  1

1

0

0

restart
1

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-2700: Digital Logic Design Fall 2024

4 Instructor: Daniel Llamocca

EXAMPLE: 7-SEGMENT SERIALIZER (VHDL CODE)

DIGITAL SYSTEM (FSM + Datapath circuit)
▪ Most FPGA Development board have a number of 7-segment displays (e.g., 4, 8). However, only one can be used at a time.
▪ If we want to display four digits (inputs A, B, C, D), we can design a serializer that will only show one digit at a time on the

7-segment displays.
▪ Since only one 7-segment display can be used at a time, we need to serialize the four HEX (or BCD) outputs. In order for

each digit to appear bright and continuously illuminated, each digit is illuminated for 1 ms every 4 ms (i.e. a digit is un-
illuminated for 3 ms and illuminated for 1 ms). This is taken care of by feeding the output 𝑧 of the ‘counter to 0.001s’ to the

enable input of the FSM. This way, state transitions only occur each 0.001 s.
▪ Note: the input signals as well as the enable signals to the four 7-segment displays are active low (this is the proper

configuration for the Nexys A7-50T/A7-100T, Nexys 4-DDR).

▪ Generic Component: Behavior on the clock tick.

0.001 s counter (modulo-105): Free running counter
if Q = 105 - 1 then

 Q  0

 else

 Q  Q+1

 end if;

end if;

* z = 1 if Q = 105-1

▪ Algorithmic State Machine (ASM) chart: This is a Moore-type FSM.

1

S1

resetn=0

s  00

s  01

S2

s  10

S3

s  11

S4

E

E

E

E

1

1

1

0

0

0

0

4

4

4

4

0

1

2

3

2

HEX to 7
segments
decoder

2-to-4
decoder

4

A

B

C

D

s

7

buf buf(3) buf(2) buf(1) buf(0)

FINITE STATE MACHINE

resetn

Counter

(0.001s)

z

E

4

DATAPATH CIRCUIT

http://www.secs.oakland.edu/~llamocca/Tutorials/VHDLFPGA/Vivado/Unit_7/serializer.zip

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-2700: Digital Logic Design Fall 2024

5 Instructor: Daniel Llamocca

EXAMPLE: BIT-COUNTING CIRCUIT (Parametric VHDL Code) (Video: VHDL coding in Vivado, n=8)

▪ It counts the number of bits in a register A that have the value ‘1’.

▪ Example: A=10110011 → count = 0101.

DIGITAL SYSTEM (FSM + Datapath circuit)

▪ FSM: as a ASM Chart. Modulo-n+1 bit counter (m bits): it has synchronous clear (𝑠𝑐𝑙𝑟).

▪ Generic components: Behavior on the clock tick:

Counter modulo-n+1 (0 to n):

If E=0, the count stays.

n-bit Parallel access shift register:

If E=0, the output is kept
if E = 1 then

 if sclr = 1 then

 Q  0

 elseif Q = n then

 Q  0

 else

 Q  Q+1

 end if;

end if;

if E = 1 then

 if s_l = ‘1’ then

 Q  D

 else

 Q  shift in ‘din’ (to the right)
 end if;

end if;

▪ Example (timing diagram): 𝑛 = 8,𝑚 = 4. Video: Timing diagram completion (different DA values)

clock

resetn

s

DA 0000111000110110

S1 S1 S2 S2 S2 S2 S2 S2 S2 S3 S1 S2 S2 S2 S2 S2 S3

A

z

3600 00 1B 0D 06 03 01

state

C

done

EA

LA

sclrC

EC

00 0E 07 03 0100 00 00 00

00000000 0000 0000 0001 0010 0010 0011 0100 0000 0000 0001 00100100 0100 0011 0011

A

din

s_l

E

0

LA

EA

Parallel Access
Right Shift (MSB to LSB)
s_l = 1 → Load

s_l = 0 → Shift

DA

z a0

Q

counter: m bits

E

sclr

EC

FINITE STATE
MACHINE

resetn S1

S2

resetn=0

1

0
s

z

EC, sclrC  1

01

EC  1

1

0

EA  1

a0

S3

done  1

1
s

0

C

done

𝑛

𝑛

𝑚 = 𝑛

𝑚

sclrC
EA, LA  1 Shift-Right

DATAPATH CIRCUIT

s

LA EA

C  0

while A  0

if a0 = 1 then

C  C + 1

end if

right shift A

end while

SEQUENTIAL ALGORITHM

http://www.secs.oakland.edu/~llamocca/Tutorials/VHDLFPGA/Vivado/Unit_7/bit_counting.zip
https://youtu.be/SrC_klgpcb8
https://youtu.be/hRgv3ZkLJD4

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-2700: Digital Logic Design Fall 2024

6 Instructor: Daniel Llamocca

EXAMPLE: SEQUENTIAL MULTIPLIER (Parametric VHDL Code) (Video: VHDL coding in Vivado, n=4)

UNSIGNED MULTIPLICATION: SEQUENTIAL ALGORITHM

P  0, Load A,B

while B  0
 if b0 = 1 then

 P  P + A

 end if

 left shift A

 right shift B

end while

Example:

P  0, A  1111, B  1101

b0=1  P  P + A = 1111. A  11110, B  110

b0=0  P  P = 1111. A  111100, B  11

b0=1  P  P + A = 1111 + 111100 = 1001011. A  1111000, B  1

b0=1  P  P + A = 1001011 + 1111000 = 11000011. A  11110000, B  0

DIGITAL SYSTEM (FSM + Datapath circuit)
▪ Iterative Multiplier Architecture. Register P: 𝑠𝑐𝑙𝑟: synchronous clear. The result is computed in at most 𝑛 cycles.

▪ Generic Components: Behavior on the clock tick:

2n-bit register:

If E=0, the output is kept

Parallel access shift register: If E=0, the output is kept

A (2n bits, left shift), B (n bits, right shift)
if E = 1 then

 if sclr = 1 then

 Q  0

 else

 Q  D

 end if;

end if;

if E = 1 then

 if s_l = ‘1’ then

 Q  D

 else

 Q  shift in ‘din’

 (to the left(A) or right(B))
 end if;

end if;

▪ Algorithmic State Machine (ASM) chart 

1 1 1 1 x

1 1 0 1

1 1 1 1

0 0 0 0

1 1 1 1

1 1 1 1

1 1 0 0 0 0 1 1

P  0 + 1111

P  1111

P  1111 + 111100 = 1001011

P  1001011 + 1111000 = 11000011

A

din

s_l

E

0

L

E

resetn

B

din

s_l

E

DataB

z b0

+

P
E

sclr

EP

sclrP

FSM

s

done

s
c
l
r
P

z

b0

E
P

Shift-rightShift-left

DataA 00..0

"00..0"&DataA

P

E L

𝑛 𝑛

𝑛

 𝑛 𝑛

 𝑛

 𝑛

 𝑛

0

L

E

DATAPATH CIRCUIT

S1

S2

resetn=0

1

0
s

z

sclrP  1

EP  1

E  1

01

EP  1

1

0
b0

S3

done  1

1
s

0

L, E  1

http://www.secs.oakland.edu/~llamocca/Tutorials/VHDLFPGA/Vivado/Unit_7/serial_mult.zip
https://youtu.be/Hr3M9ePgCSg

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-2700: Digital Logic Design Fall 2024

7 Instructor: Daniel Llamocca

▪ Timing Diagram example: 𝑛 = 4

EXAMPLE: RGB LED CONTROL
▪ We change the color of the RGB LED every 0.5 seconds. Two modes are allowed (based on an input ‘x’).

✓ First Mode: BLACK → RED → GREEN → BLUE
✓ Second Mode: BLACK → YELLOW → CYAN → VIOLET

clock

resetn

s

DB 11011111

DA 11111111

S1 S1 S2 S2 S2 S2 S2 S3 S1 S1 S2 S2 S2 S2 S2 S3 S1

B

A 0F

z

0000 1E 3C 78 F0 E0

11110000 0000 0111 0011 0001 0000 0000

state

000000 0F 2D 69 E1P

done

L

E

E1

sclrP

EP

1101 0110 0011 0001 0000

0F 1E 3C 78 F0 E0

00 00 0F 0F 4B C3 C3 C3E1

0000 0000 0000 0000

E0 E0 E0

FINITE STATE
MACHINE

resetn

S1
resetn=0

1

0
E

x

RGB  000

S2a

RGB  100

E
0

R

G

B

DATAPATH CIRCUIT

x

Counter

(0.5s) z
E'1'

E

S3a

RGB  010

E
0

1

S4a

RGB  001

E
0

1

1

0

S2b

RGB  110

E
0

S3b

RGB  011

E
0

1

S4b

RGB  101

E
0

1

1

1

R G B

0 0 0

1 0 0

0 1 0

0 0 1

R G B

0 0 0

1 1 0

0 1 1

1 0 1

x=0 x=1

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-2700: Digital Logic Design Fall 2024

8 Instructor: Daniel Llamocca

EXAMPLE: CAN BIT STUFFING (RECEIVER)
▪ Whenever a CAN transmitter detects 5 consecutive identical bits, it inserts a complemented bit. This is applied only to the

start-of-frame field, arbitration, control, data, and CRC field. The figure shows a frame in the CAN version 2.0b.

▪ In a CAN receiver, we have to verify whether the stuffed bits are correct:

DIGITAL SYSTEM (FSM + Datapath Circuit)
▪ Input signal 𝑥: qualified by

𝐸. The system generates

𝑥_𝑑 (de-stuffed 𝑥) qualified

by v. If 6 consecutive bits

are identical, we assert

stuff_err (stuffing error).

▪ We compare two
consecutive samples (𝑥[𝑛]
and 𝑥[𝑛 −]). Here, 𝑥 =
𝑥[𝑛] and 𝑥_𝑑 = 𝑥[𝑛 −].
To determine whether 5
consecutive bits are identical, we compare 𝑥[𝑛] and 𝑥[𝑛 −] four times.

▪ Finite State Machine:
✓ S1: captures the first bit, though there is no other bit to compare it to.
✓ S2: captures the other incoming bits, and it compares two consecutive bits at a

time. If they match, then CC+1, otherwise C0. This can happen indefinitely

until C=3 and these two bits match (i.e., after 4 comparisons, we determined that

5 consecutive bits are identical). Then, we move to S3.
✓ S3: It determines whether the stuffed bit is correct. If the 5th and 6th bits match,

there is an error. On the next cycle, 𝑥_𝑑 is invalid and we do not assert the valid

flag v, as we are de-stuffing this extra bit. We then return to S1 and start over.

▪ In the figure, we start right after resetn was asserted. Cases: 111111, 000001. E=1.

Start of
Frame

Arbitration Field Control Field Data FieldData Field CRC Field ACK End of Frame

Interframe
Space

Start of
Frame

1
12 (standard)
32 (extended)

6 0-64 16 2 7

11-bit identifier R
T
R

Arbitration Field

ID
E

r0

D
LC

3

D
LC

2

D
LC

1

D
LC

0

Control Field

Data Length Code

11-bit base identifier R
T
R

Arbitration Field

r1 r0

D
LC

3

D
LC

2

D
LC

1

D
LC

0

Control Field

Data Length Code

S
R

R

ID
E

18-bit extended identifier

CRC sequence (15 bits)

CRC field

CRC delimiter

A
C

K
sl

o
t

ACK field

ACK delimiter
recessiv e from sender

changed into dominant for ack

1

1

Recessive bits

Standard
Format:

Extended
Format:

1

t

1 1 1 1 1000001

Stuffed bits

0

Q

counter

0 to 3

zC

E

sclr

EC

clock

resetn

sclrCFSM

x_d

z

2

x

xq

E

v

stuff_err

can_destuff

Ex

zC

E

vderr

S1

S2

resetn=0

EC  1

sclrC  1

1

E 0

Ex  1, v d  1

1

0

EC  1

slcrC  1

y es

x=xq
no

EC  1

1

zC
0

Ex  1, v d  1

S3

1

E
0

err  1

no
x=xq

y es

E

1

clock

x

state

v

x_d

stuff_err

C

S1 S2

0 0 2 3 3

S2 S2 S2 S3 S1

3

S2

0 1 2 3 3 3

S2 S2 S2 S3 S1

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-2700: Digital Logic Design Fall 2024

9 Instructor: Daniel Llamocca

EXAMPLE: SERIAL DATA TRANSMISSION WITH UART (VHDL CODE)

UART Interface
▪ This interface transfers data asynchronously (clock is not

transmitted; transmitter and receiver use their own clocks).
▪ Data communication: RXD (receive pin), TXD (transmit pin). The

FT2232 chip inside the Nexys-4 board is in charge of handling
the USB communication with a computer.

▪ Format of a Frame: Start bit (‘0’), 8 to 9 data bits (LSB
transmitted first), optional parity bit, and a stop bit (‘1’).

▪ Transmitter: Simple design that transmit the data frame at the Baud rate (or bit rate in bps).
▪ Receiver: It uses a clock signal whose frequency is a multiple (usually 16) of the incoming data rate.

DIGITAL SYSTEM (FSM + Datapath circuit)
▪ This circuit sends data from the Artix-7 FPGA (that is read via

switches) to the FT2232 chip.
▪ For a baud rate of 9600 bps, the Baud rate clock is 9600 Hz. The bit

time is 104.2 us.

Then: 𝑁 =
1
9600⁄

10 𝑛𝑠
= 04 6. We need a counter modulo-𝑁 in order

to generate the proper time interval (bit time of 104.2 us).

▪ Generic component (counter): Behavior on the clock tick:

If E=0, the count stays.
if E = 1 then

 if sclr = 1 then

 Q  0

 else

 Q  Q+1

 end if;

end if;

* z=1 if Q = N-1 (max. count)

✓ Note that the way this counter (my_genpulse_sclr) is designed,

once the maximum count is reachd, asserting enable to ‘1’ will
set the count to 0.

Baud rate clock

TXD DO D1 D2 D3 D4 D5 D6 D7 stopstart

S1

S2

resetn=0

TXD  1

TXD  1

1

E
0

LR, ER  1

EC  1 (C C+1)

0

E
1

S3

TXD  0

1

zC
0

EC  1 (C 0)
If max count is reached,
EC=1 makes C=0

EC  1 (C  C+1)

S4

TXD  so

1

zC
0

EC  1 (C 0), ER  1

EQ  1 (Q  Q+1)

1

zQ
0

EQ  1 (Q 0)
If max count is reached,
EQ=1 makes Q=0

EC  1 (C C+1)

S5

TXD  1

1
zC

0
EC  1 (C 0)

STOP bit

START bit

8 DATA bits

TXD

FT2232

RXD

Artix-7 - Nexys4

C4

D4 (TXD)

(RXD)
Micro

USB

FSM
LR
ER

zC

Q n

counter
0 to N-1

zC

E

sclr

EC

RIGHT SHIFT

REGISTER
s_L
E din

SW

8

0

Q 3

counter
0 to 7

zQ

E

sclr

EQ

00

8

zQ

EC

EQ

dout

TXD

clock

resetn

E

so

z z

http://www.secs.oakland.edu/~llamocca/Tutorials/VHDLFPGA/Vivado/Unit_7/uart_tx.zip

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-2700: Digital Logic Design Fall 2024

10 Instructor: Daniel Llamocca

EXAMPLE: PS/2 INTERFACE FOR KEYBOARD (VHDL CODE)

PS/2 Interface
▪ This interface transfers data synchronously (clock is transmitted

alongside data).
▪ The PIC24FJ128 chip (auxiliary function microcontroller) inside the

Nexys-4 DDR board emulates an old-style PS/2 bus and presents a
PS/2 protocol to the FPGA. The PS/2 bus signals are converted to the
USB protocol. Thus, we can interface with a USB keyboard or mouse
as if they were using the PS/2 protocol.

▪ PS/2 bus uses a bidirectional two-wire serial bus (PS2_CLK and

PS2_DATA) to communicate with a host. The FPGA plays the role of the host.

▪ Format of a Frame: Start bit (‘0’), 8 data bits (LSB transmitted first), parity bit (odd), and a stop bit (‘1’).
▪ Timing Diagram: Data (1 byte) is captured on the falling edge. The following are times found in the Nexys-4 DDR datasheet:

T  [60 us,100 us], tSU, tHD  [5 us,25 us]

BYTE READ - DIGITAL SYSTEM (FSM + Datapath)
▪ This system can only receive data from the

PIC24FJ128. Thus, it only reads the PS2_CLK and

PS2_DAT signals.

▪ 10-bit output: |STOP|parity|D7-D0|.

▪ Counter: EQ=1  Q  Q+1. Note that once the

maximum count is reached, asserting enable to ‘1’
resets the count to 0.

▪ Falling Edge Detector. This FSM detects transitions
from 1 to 0 on ps2cf.

PS2_CLK

PIC24FJ128

PS2_DAT

Artix-7 - Nexys4

F4

B2U
S
B

H
o
s
t

C
o
n
n
e
c
t
o
r

PS2_CLK

PS2_DAT DO D1 D2 D3 D4 D5 D6 D7 stopstart p

T tSU tHD

S1

S2

resetn=0

0

1

f all_edge  1

1

ps2cf
0

ps2cf

Falling Edge Detector

clock

ps2cf

resetn

fall_edge

S1

S2

resetn=0

1

E, EQ  1

1

fall_edge
0

FSM MAIN

0

1
ps2d

fall_edge
0

1 0
zQ

done_d  1

S
T
A

R
T
 b

it
8

 D
A

T
A

 b
its

+
 P

a
rity

 +
 S

T
O

P
 b

it

EQ
FSM
MAIN

RIGHT SHIFT

REGISTER
s_L
E dout

Q
4

counter
0 to 9

zQ

E

10

zQ

din

clock

resetn

0

FSM

ps2d

ps2c f ilter

DOUT

done_d

my_ps2read

falling edge
detector

ps2cf

fall_edge

done

http://www.secs.oakland.edu/~llamocca/Tutorials/VHDLFPGA/Vivado/Unit_7/my_ps2keyboard.zip

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-2700: Digital Logic Design Fall 2024

11 Instructor: Daniel Llamocca

▪ Filter: It makes sure that ps2c (PS2_CLK) is constant for at least 8 clock cycles (FPGA operating frequency) before ps2cf

is assigned a ‘1’ or a ‘0’. This mitigates the presency of glitches that may have been interpreted as falling edges. The choice

of 8 cycles is based on actual testing (use more cycles if you notice glitches affecting the functioning of the circuit.

INTERFACING WITH A PS/2 KEYBOARD
▪ Data from the PS/2 keyboard is given as an 8-bit scan code (see Nexys4-DDR datasheet for a list of scan codes). The

following is the protocol that is used when a key is pressed:
✓ If a key is held, the scan code is sent repeatedly every 100 ms.
✓ When the key is released, an F0 key-up code is sent, followed by the scan code of the released key.

✓ If a key can be shifted to produce a new character (like a capital letter), then a shift character is sent alongside the scan
code. Example: F0 12 [scan code].

✓ Some keys, called extended keys, send an E0 ahead of the scan code. When an extended key is released, an E0 F0

key-up code is sent, followed by the scan code.
▪ The circuit presented here cannot read extended keys or shifted keys, only normal keys. It waits for the key-up code (F0),

and then it captures the scan code. For example, for ‘U’, the PS/2 keyboard sends |F0|3C|, this circuit retrieves 3C.

▪ The block my_ps2read outputs 10 bits when it receives any code from the PS/2 keyboard. Example:

✓ DOUT10 = 1111000000, where parity bit is  000000̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =

✓ DOUT10 = 1100111100, where parity bit is 00    00̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =

✓ DOUT10 = 1100011100, where parity bit is 000   00̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = 0

▪ The timing diagram shows when the ‘U’ key is pressed and released: F0 (key-up code) is sent first, then 3C (scan code).

Filter

RIGHT SHIFT

REGISTER
s_L
E

8

din
0

1

ps2c

a b

ps2cfD

E

a b D E

0 0 X 0

0 1 0 1

1 0 1 1

1 1 0 1

clock

ps2c

ps2cf

all 1's? all 0's?

3CF0

FSM

clock

resetn

ps2d

ps2c
my_ps2read

my_ps2keyboard

Er

D Q
E

DOUT
10 8

done_r
DOUT8

8

S1

S2

resetn=0

1

0

Er  1

1

done_r
0

done_r

dout8=F0
no

y es

KEY-UP
CODE

SCAN
CODE

clock

done_r

DOUT8

DOUT 3C

8
DOUT10

33C3F0DOUT10

done

done

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-2700: Digital Logic Design Fall 2024

12 Instructor: Daniel Llamocca

EXAMPLE: ARTIFICIAL NEURON
▪ Artificial neuron model. The membrane potential 𝒛 is a sum of products

(input activations 𝑎𝑖 by weights 𝑤𝑖) to which a bias term 𝑏 is added. The

action potential 𝒂𝒐 is modeled as a scalar function of 𝒛. The figure depicts a

neuron with 5 inputs. The bias and the weights are constant values.

𝑎𝑜 = 𝜎 (∑𝑎𝑖 × 𝑤𝑖
𝑖

 𝑏)

✓ A popular and simple scalar function is the Rectified Linear Unit (ReLU):

 𝜎(𝑧) = 𝑧 if 𝑧 ≥ 0, otherwise 𝜎(𝑧) = 0.

▪ DIGITAL SYSTEM (FSM + Datapath): An iterative architecture for a 5-input

neuron is depicted. The circuit captures the input data (𝑎1, 𝑎 , 𝑎3, 𝑎4, 𝑎5) and then computes 𝒛 using a multiply-and-

accumulate approach (see iterative algorithm). The output 𝒂𝒐 is computed by applying the ReLU function to 𝒛.

✓ All data is represented as signed integers:
 Input activations (𝑎1, 𝑎 , 𝑎3, 𝑎4, 𝑎5), weights (𝑤1, 𝑤 , 𝑤3, 𝑤4, 𝑤5), bias (𝑏): 4-bits wide.

 Weights and biases: They are constant values.
 Membrane potential (𝒛) and action potential (𝒂𝒐): 12-bits wide (11 bits suffice, we select 12 for simplicity’s sake).

✓ Example (this is what appears in the timing diagram, where 𝒛 and 𝒂𝒐 are in hexadecimal format):

 𝑤1 = 04, 𝑤 = 0 , 𝑤3 = 0 , 𝑤4 = 08, 𝑤5 = 0 . 𝑏 = 06
 If 𝑎1 = 04, 𝑎 = 0𝐸, 𝑎3 = 0𝐶, 𝑎4 = 05, 𝑎5 = 0𝐴.

 Then 𝒛 = 44 −  −4 5(−8) −6 = −40 = 0𝐹𝐷8. Finally, 𝒂𝒐 = 0000

✓ Components:

 Counter 0 to 4: If E=1, sclr=1, then Q  0. If E=1, sclr=0, then Q  Q+1. Also: z=1 if Q = 4, else z=0.

 Register: If E=1, sclr=1→ Clear. If E=1, sclr=0 → Load data.

 44 Signed Multiplier: Combinational circuit, whose result is 8-bits wide (sign-extended to 12 bits).

 ReLU: Combinational Block that implements the ReLU operation. For example, if 𝒛 = 0𝐹𝐷8, then 𝒂𝒐 = 0000

✓ FSM: The process begins when s is asserted, at this moment we capture 𝑎1, 𝑎 , 𝑎3, 𝑎4, 𝑎5 on the input registers. Then 𝒛

is updated until the counter reaches its maximum value (4). The signal done is asserted when the final result is computed.

S

membrane
potential

action
potential

clock

resetn

E
sclr

+

0 1 sb

FSM

i

0 1 2 3 4

0

1

2

3

4

4 4 4 4 4

4

4

Q

Counter
0 to 4

Ei i

sclri

E
sclr

3

z zi

4

4

4

4

ReLU

12

8
sign extension

to 12 bits

12

12

3

4

4

done

s
sb

E
i

sc
lr
i

E
o

sc
lr
o

zi

ALGORITHM

12

12

E

E

E

E

E

E

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-2700: Digital Logic Design Fall 2024

13 Instructor: Daniel Llamocca

FSM:

S1

S2

resetn=0

1

0
s

zi

Ei, sclri  1

Eo  1

0

1

Ei  1

S4

done  1

1
s

0

E, Eo, sclro  1

S3

sb  1, Eo  1

Ei, sclri  1

i=4?

S1S1 S2 S2 S2 S2 S2 S3 S4

clock

resetn

s

S1

sclro

state

i

done

Eo

sb

sclri

Ei

000

000

0x4EC5A

000

E

000 000 001 010 011 100 000 000 000

000 000 010 00E 006 FDE FD2 FD8 FD8

000 000 010 00E 006 000 000 000 000

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-2700: Digital Logic Design Fall 2024

14 Instructor: Daniel Llamocca

EXAMPLE: SIMPLE PROCESSOR

DIGITAL SYSTEM (FSM + Datapath circuit)
▪ This system is a basic Central Processing Unit (CPU). For completeness, a memory would need to be included.

▪ Instruction Set

Every time w=1, we grab the instruction from IR and execute it.

Instruction = |f2|f1|f0|Ry|Rx|. This is called ‘machine language instruction’ or Assembly instruction.

✓ Opcode (operation code): IR(4..2). These bits specify the operation to be performed.

✓ Operands: IR(1..0). These bits specify the register indices to be used in the operation:

 Rx: index of the register where the result of an operation is stored (we also read data from Rx). Rx can be R0 or R1.

 Ry: index of the register where we only read operands from. Ry can be R0 or R1.

f (IR[4..2]) Operation Function

000 load IN IN  Switches

001 load Rx, IN Rx  IN

010 copy Rx, Ry Rx  Ry

011 add Rx, Ry Rx  Rx + Ry

100 add Rx, IN Rx  Rx + IN

101 xor Rx, Ry Rx  Rx XOR Ry

110 inc Rx Rx  Rx + 1

111 load OUT, Rx OUT  Rx

R1
E

E
_
R
1

R0
E

E
_
R
0

A
E

E
_
A

G
E

ALU

CONTROL CIRCUIT

o
p

4

w

IR
5 done

BUS

B

E
_
G

4
0

1

2

3

2

4

4

4

IN
E

SWITCHES

OUT
E

LEDS

4

E
_
I
N

E
_
O
U
T

S
M

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-2700: Digital Logic Design Fall 2024

15 Instructor: Daniel Llamocca

▪ Control Circuit:
Here, the Control Circuit could be implemented as

an FSM. However, in order to simplify the FSM
design, the Control Circuit was built out of some
combinational units, a register, and an FSM. The
5-bit instruction is captured on the signal IRq.

✓ Ex: Every time we want to enable register 𝑅𝑥,

the FSM only asserts Ex (instead of controlling

E_R0, E_R1 directly). The decoder takes care

of generating the enable signal for the
corresponding register 𝑅𝑥.

✓ Control Circuit: FSM

Rx

Ex

DECODER

with

enable

0

1

w

E

E_R0

E_R1

FSM done

w

f
3

E
_
G

E
_
I
N

E
_
O
U
T

o
p

4

QD

E

IR IRq

IRq = |f2|f1|f0|Ry|Rx|

E
_
A

E_IR

5 5

opcode

E
_
I
R

Ex Ry

S
M

Rx

CONTROL

CIRCUIT 2

S1

S2

resetn=0

1

0

E_IN  1

SM  00, Ex  1

000

001

010

SM  1&Ry ,

E_G  1

op  0110

SM  01,

Ex  1

S3a

S3b

SM  1&Rx

E_A  1

w

f

E_IR  1

011 100 101

110

111

SM  1&Ry ,

Ex  1

SM  00,

E_G  1

op  0110

SM  01

Ex  1

S4a

S4b

SM  1&Rx

E_A  1

SM  1&Ry ,

E_G  1

op  1110

SM  01,

Ex  1

S5a

S5b

SM  1&Rx

E_A  1

SM  01

Ex  1

S6

SM  1&Rx,

op  0100

E_G  1

SM  1&Rx,

E_OUT  1

S7

0 1

w

done  1

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-2700: Digital Logic Design Fall 2024

16 Instructor: Daniel Llamocca

▪ Arithmetic Logic Unit (ALU):

op Operation Function Unit
0000

0001

0010

0011

0100

0101

0110

0111

y <= A

y <= A + 1

y <= A - 1

y <= B

y <= B + 1

y <= B – 1

y <= A + B

y <= A – B

Transfer ‘A’

Increment ‘A’

Decrement ‘A’

Transfer ‘B’

Increment ‘B’

Decrement ‘B’

Add ‘A’ and ‘B’

Subtract ‘B’ from 'A'

Arithmetic

1000

1001

1010

1011

1100

1101

1110

1111

y <= not A

y <= not B

y <= A AND B

y <= A OR B

y <= A NAND B

y <= A NOR B

y <= A XOR B

y <= A XNOR B

Complement ‘A’

Complement ‘B’

AND

OR

NAND

NOR

XOR

XNOR

Logic

▪ Assembly code example:

load IN; IN  0101 (SWs = 0101)

load R1, IN; R1  0101

copy R0, R1; R0  0101, R1  0101

inc R1; R1  0110

xor R0, R1; R0  0101 xor 0110 = 0011

add R0, R1; R0  0011 + 0110 = 1001

load OUT, R0; OUT  1001

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-2700: Digital Logic Design Fall 2024

17 Instructor: Daniel Llamocca

EXAMPLE: SIMPLE PROCESSOR WITH 3-STATE BUFFERS

DIGITAL SYSTEM (FSM + Datapath circuit)

▪ Instruction Set

Every time w = '1', we grab the instruction from 𝑓𝑢𝑛 and execute it.

𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 = |𝑓 |𝑓1|𝑓0|𝑅𝑦1|𝑅𝑦0|𝑅𝑥1|𝑅𝑥0|. This is called ‘machine language instruction’ or Assembly instruction:

✓ 𝑓 𝑓1𝑓0: Opcode (operation code). This is the portion that specifies the operation to be performed.
✓ 𝑅𝑥: Register where the result of the operation is stored (we also read data from 𝑅𝑥). 𝑅𝑥 can be R1, R2, R3, R4.

✓ 𝑅𝑦: Register where we only read data from. 𝑅𝑦 can be R1, R2, R3, R4.

f Operation Function

000 Load Rx, Data Rx  Data

001 Move Rx, Ry Rx  Ry

010 Add Rx, Ry Rx  Rx + Ry

011 Sub Rx, Ry Rx  Rx - Ry

100 Not Rx Rx  NOT (Rx)

101 And Rx, Ry Rx  Rx AND Ry

110 Or Rx, Ry Rx  Rx OR Ry

111 Xor Rx, Ry Rx  Rx XOR Ry

R0
E

O
_
R
0

E
_
R
0

R1
E

O
_
R
1

E
_
R
1

R2
E

O
_
R
2

E
_
R
2

R3
E

O
_
R
3

E
_
R
3

A
E

O
_
G

E
_
A

G
E

ALU

E
_
e
x
t

CONTROL CIRCUIT

Data

o
p

4

w

fun
7

done

BUS

B

E
_
G

QD
n

Data_in
n

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-2700: Digital Logic Design Fall 2024

18 Instructor: Daniel Llamocca

▪ Control Circuit:
This is made out of some combinational units, a register, and a FSM:
✓ Ex: Every time we want to enable register 𝑅𝑥, the FSM only asserts Ex (instead of controlling E_R0, E_R1, E_R2, E_R3

directly). The decoder takes care of generating the enable signal for the corresponding register 𝑅𝑥.
✓ Eo, so: Every time we want to read from register 𝑅𝑦 (or 𝑅𝑥), the FSM only asserts Eo (instead of controlling O_R0,

O_R1, O_R2, O_R3 directly) and so (which signals whether to read from 𝑅𝑥 or 𝑅𝑦). The decoder takes care of generating

the enable signal for the corresponding register 𝑅𝑥 or 𝑅𝑦.

▪ Arithmetic-Logic Unit (ALU):

op Operation Function Unit

0000

0001

0010

0011

0100

0101

0110

0111

y <= A

y <= A + 1

y <= A - 1

y <= B

y <= B + 1

y <= B – 1

y <= A + B

y <= A – B

Transfer ‘A’

Increment ‘A’

Decrement ‘A’

Transfer ‘B’

Increment ‘B’

Decrement ‘B’

Add ‘A’ and ‘B’

Subtract ‘B’ from 'A'

Arithmetic

1000

1001

1010

1011

1100

1101

1110

1111

y <= not A

y <= not B

y <= A AND B

y <= A OR B

y <= A NAND B

y <= A NOR B

y <= A XOR B

y <= A XNOR B

Complement ‘A’

Complement ‘B’

AND

OR

NAND

NOR

XOR

XNOR

Logic

Rx1

Rx0

Ex

DECODER

with

enable

0

1

2

3

0

1

E

E_R0

E_R1

E_R2

E_R3

Ry

Eo

DECODER

with

enable

0

1

2

3

0

1

E

O_R0

O_R1

O_R2

O_R3

Rx

so

0

1

2

2
2

FSM
done

w

f
3

Ex Eo so E
_
G

O
_
G

E
_
e
x
t

o
p

4

E_fun

QD

E

7
fun

7
funq

funq = |f2|f1|f0|Ry1|Ry0|Rx1|Rx0|

E
_
A

E
_
f
u
n

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-2700: Digital Logic Design Fall 2024

19 Instructor: Daniel Llamocca

▪ Algorithmic State Machine (ASM) Chart:
Every branch of the FSM implements an Assembly instruction.

 S1

S2

resetn=0

1

0

E_ext, Ex  1

done  1

Eo, Ex  1

done  1

000

001

Eo, so  1

E_A  1

Eo, E_G  1

op  0110

O_G, Ex  1

done  1

010

S3a

S3b

Eo, E_G  1

op  0111

O_G, Ex  1

done  1

S4a

S4b

Eo, so  1

E_A  1

E_G  1

op  1000

O_G, Ex  1

done  1

S5a

S5b

Eo, so  1

E_A  1

Eo, E_G  1

op  1010

O_G, Ex  1

done  1

S6a

S6b

Eo, so  1

E_A  1

Eo, E_G  1

op  1011

O_G, Ex  1

done  1

S7a

S7b

Eo, so  1

E_A  1

Eo, E_G  1

op  1110

O_G, Ex  1

done  1

S8a

S8b

Eo, so  1

E_A  1

w

f

E_fun  1

011 100 101

110

111

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-2700: Digital Logic Design Fall 2024

20 Instructor: Daniel Llamocca

EXAMPLE: DISPLAYING PATTERNS ON 7-SEGMENT DISPLAYS

▪ Different patterns are shown based on the selector ‘sel’ signal. Two 7-segment displays are used.

▪ ‘stop’ input: If it is asserted (stop = 1), the lights’ pattern freezes.
▪ The input ‘x’ selects the rate of change (every 1.5, 1.0, 0.5, or 0.25 seconds).

DIGITAL SYSTEM (FSM + Datapath circuit)

sel[1..0]

00

01

10

11

segs[7..0] :

?
clock

resetn

2
8 segs

2

sel

x

stop

7 6

5

4

0

1

2 3

FINITE STATE
MACHINE

resetn

Q

clock

??

counter (1.5s)

z

Q ??

counter (1.0s)

z

Q ??

counter (0.5s)

z

FINITE STATE
MACHINE

stop

8

Q ??

counter (0.25s)

z

0

1

2

3

x

2

E

7
0

1

1-to-2
decoder

7

buf buf(1) buf(0)

sel

2

s

x = 00 → Lights change every 1.5 s

x = 01 → Lights change every 1.0 s

x = 10 → Lights change every 0.5 s

x = 11 → Lights change every 0.25 s

On the NEXYS4, only one 7-segment
display can be used at a time

Counter

(0.001s)

z

E

D Q
E

dseg

7Esg

8

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-2700: Digital Logic Design Fall 2024

21 Instructor: Daniel Llamocca

▪ Algorithmic State Machine (ASM) chart:

▪ Algorithmic State Machine (ASM) chart: This is the FSM that controls the output MUX

S1

resetn=0

1

0
E

sel

S2

1

0

E

S3

1

0

E

S4

1

0

E

S5

1

0

E

S6

1

0

E

S7

1

0

E

S8

1

0

E

S9

1

0

E

S10

1

0

E

S11

1

0

E

S12

1

0

E

S13

1

0

E

00 11

01 10

dseg00000111, Esg1 dseg00000101, Esg1 dseg00000011, Esg1 dseg00110011, Esg1

dseg00001110, Esg1 dseg00001010, Esg1 dseg00110000, Esg1 dseg01100110, Esg1

dseg00011100, Esg1 dseg00010100, Esg1 dseg00001100, Esg1 dseg11001100, Esg1

dseg00111000, Esg1 dseg00101000, Esg1 dseg11000000, Esg1 dseg10011001, Esg1

S1

resetn=0

s  0

s  1

S2

E

E

0

0

1

1

	Digital System Model
	Use of Generic components

	Examples
	Example: Car Lot Counter
	Example: Accumulator
	Example: 7-segment serializer (VHDL code)
	Example: Bit-Counting Circuit (Parametric VHDL Code) (Video: VHDL coding in Vivado, n=8)
	Example: Sequential Multiplier (Parametric VHDL Code) (Video: VHDL coding in Vivado, n=4)
	Example: RGB Led Control
	Example: CAN Bit Stuffing (Receiver)
	Example: Serial Data Transmission with UART (VHDL code)
	Example: PS/2 Interface for Keyboard (VHDL code)
	Example: Artificial Neuron
	Example: Simple Processor
	Example: Simple Processor with 3-state buffers
	Example: Displaying Patterns on 7-segment Displays

